Time Series Data and Fourier Transforms

Jason Bailey

Quick Summary

- Look Time Series Data
- See data in Time domain (time series) and Frequency domain (using Fourier Transform)
- Application: Filter data/Extract pattern with Fourier Transform
- FFT Fast Fourier Transform

What is Time Series Data

- A sequence of data points
- Typically at successive points in time spaced at uniform time intervals
- Used:
- statistics, signal processing, pattern recognition, finance, weather forecasting, earthquake prediction, control engineering and communications engineering

What if we want to extract a pattern from time series data?

https://gist.github.com/espeecat/5438953

A sine wave or sinusoid

y(t) = A sin(2πft +φ) Sometimes 2πfwritten as ω

Cosine too

Much better to see it in a graph

- Use a tool like Matlab
 - A programmable calculator with good graph/chart abilities
- Other tools are available and much cheaper

An example of a sinusoid and FFT

https://gist.github.com/espeecat/5439069

The Fourier Transform (FFT)

- Based on Fourier Series represent periodic time series data as a sum of sinusoidal components (sine and cosine)
- (Fast) Fourier Transform [FFT] represent time series in the frequency domain (frequency and power)
- The Inverse (Fast) Fourier Transform [IFFT] is the reverse of the FFT
- Like graphic equaliser on music player

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(nx) + b_n \sin(nx)$$

Combining Sinusoids 10 -5 -10 L Time (s) -10 L Time (s) -10 ^L Time (s)

Looking at the Fourier Transforms

Applications of Fourier Transform

- Shazam "finger printing" using Fourier Transforms
- Images The Gabor Transform for facial recognition?
- Filtering data/ Extracting patterns
- Sound processing discarding sound
- System Identification

The (Fast) Fourier Transform

- Discrete-time Fourier Transform –assumes sampled data and limited length
- Implementations available in lots of programming languages e.g. http://www.fftw.org/
- Python numpy.fft

Filtering Time Series Data

Original data and filtered data

Thank you

Alternative to Matlab

- SciLab https://www.scilab.org/
- Octave http://www.gnu.org/software/octave/
- R http://www.r-project.org/
- Programming language & graph library

Twitter @espeecat www.jasonbailey.net

Discrete-Time Fourier Transform

• $\omega = 2\pi f$ –angular frequency

$$X_{2\pi}(\omega) = \sum_{n=-\infty}^{\infty} x[n] e^{-i\omega n}.$$

 Euler Formula used but this represents

$$e^{i2\pi ft} = \cos(2\pi ft) + i\sin(2\pi ft)$$

$$X_k = \sum_{n=0}^{N-1} x_n \cdot e^{-i2\pi kn/N} \qquad x_n = \frac{1}{N} \sum_{k=0}^{N-1} X_k \cdot e^{i2\pi kn/N}$$